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Motivation

e Exploiting the natural metabolic abilities of microorganisms for the production of
bioactive compounds has been a research problem of great interest.

e The economical and environmental costs associated with petrochemical-derived
industries have promoted the emergence of biochemical processes from renewable
carbon sources

e Recently, some retrobiosynthesis tools for the design of de novo biosynthetic pathways
have been proposed. These tools generate a large number of intermediate
compounds that are beyond experimental feasibility.

e Thus, effective methods to reduce the number of compounds to screen by selecting
the most promising ones are needed.

e In this study, we propose the use of deep learning models to predict the number of
biochemical transformations needed to produce a compound from natural
compounds.



Objectives

e Generate a dataset of intermediate compounds from a pool of
starting materials (natural compounds) using reaction rules.

e Predict the number of biochemical transformations needed to
synthesize a compound using deep learning models.

e Explore different compound representations and model
architectures, including classification and regression approaches.
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e Reaction rules are generic descriptions of reactions that encode the way reactants
are converted into products. A reaction rule can be applied to a compound if the
compound contains a particular substructure that is encoded by the reaction rule.

e In this study, we used a set of 13055 reaction rules represented as SMARTS. These
reaction rules were retrieved from the RetroRules and MINE databases.
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Starting Compounds

e The list of starting precursors that we assume to be available are the ones existing in the
metabolism from Escherichia coli. We selected this microorganism because it is widely
used host for bioengineering processes including in the synthesis of added-value
compounds.

e These compounds were obtained from the RetroPathRL GitHub
(https://aithub.com/brsynth/RetroPathRL). The compounds with available and valid
identifiers were selected resulting in a set of 673 starting compounds.
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Generated Datasets

The dataset used to train and evaluate our DL models was generated by successively
applying randomly selected reaction rules to randomly selected compounds from the
previous step. In the first step, we use the starting compound set (673 compounds).

Since the compounds present in later steps were generated using the ones from the
previous step, there is a dependency between the compounds generated at each
step. To validate if the previously generated dataset was representative enough we

generated an independent set using the same approach.
NEW COMPOUNDS GENERATED AT EACH STEP.

Step | Generated Dataset | Independent Dataset
1 146157 16439
2 464994 27151
3 600280 44681
4 698529 97249
5 773586 70342
Total 2683546 255862




Molecular Representations

e In this study, we focused on two distinct molecular representations, the well-known
Morgan fingerprints and the NLP-based Molecular Transformer Embeddings (MTE).

e \We computed Morgan fingerprints of radius 2 hashed to 1024 bits using RDKIit.

C#Cc1ccee(Ne2nenc3ec(OCCOC)c(OCCOC)cc23)ct
SMILES string

Morgan Fingerprints




Molecular Representations

e The MTE is a transformer-based model that was trained and repurposed, through
transfer learning, to predict binding affinity. We used the intermediate embeddings that
represent abstract features that describe general molecular structures.

e We computed these MTE for our datasets with a defined maximum length of our
compound SMILES of 300 characters and an embedding size of 512.

C#Cc1ccee(Ne2nenc3ec(OCCOC)c(OCCOC)cc23)ct
SMILES string
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Molecular Transformer Embeddings




Models

e \We consider the use of 2 different model architectures: Fully Connected Neural
Networks (FCNN) and 1D-Convolutional Neural Networks (1D-CNN) working over
features created from the previous two representations

e \We performed hyperparameter optimization using 5-fold RandomizedSearchCV for 15
iterations and a 3-fold for 10 iterations for our FCNN and 1D-CNN models, respectively.

e Both these architectures were used in classification and regression approaches,
changing only the final layer, and also the error metrics




Models: hyperparameters tested ans selected configurations

e Fully Connected Neural Networks:
PARAMETERS OPTIMIZED USING A 5-FOLD RANDOMIZEDSEARCH FOR THE FCNNS.

Parameter Values Morgan Classification | MTE Classification | Morgan Regression | MTE Regression
# of hidden layers 2,4, 6 2 2 6 2
Hidden layers units 1024, 512, 256 512 1024 256 512
First dropout 0,02, 0.5 0.2 0 0.2 0
Dropout hidden layers 0,0.3,04 0 0.4 0 0.3
11 0, 0.001, 0.01 0 0 0 0
12 0, 0.001, 0.01 0 0.01 0 0

e 1D Convolutional Neural Networks:

PARAMETERS OPTIMIZED USING A 3-FOLD RANDOMIZEDSEARCHCYV FOR THE 1D CNNSs.

Parameter Values Morgan Classification | MTE Classification | Morgan Regression | MTE Regression
Gaussian noise stddev 0.01, 0.05 0.05 0.01 0.05 0.05
Size of output filters 4, 8, 16 16 8 16 8
Kernel size 32, 64, 128 32 32 64 64
Dense layers units 512, 256, 128 512 512 256 128
Dropout 0, 0.3, 0.5 0.5 0.3 0.5 0




Results and Discussion - Classification
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We obtained considerably better results when using morgan fingerprints as input.

With the FCNN we also obtained slightly better results when compared with the 1D

CNN.
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Fig. x - Test and independent set accuracy for all models.
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Fig. x - Test and independent set accuracy allowing miss-classification by
one step for all models.




Results and Discussion - Classification

e If we take a closer look at the confusion matrix, we can see that the majority of the
mispredictions, around 78%, fail by one step, which may be a reasonable estimate in
practical applications.

e This can also mean that this problem can better be modeled as a regression task.

CONFUSION MATRIX OF THE FCNN WITH MORGAN FINGERPRINTS.

Step 1 2 3 - 5
1 25141 3316 228 101 82
2 4073 | 77539 | 9361 1632 753
3 1229 | 21039 | 76363 | 19234 | 2115
4 841 10837 | 30449 | 75675 | 22091
5 594 7145 17113 | 46150 | 83609




Results and Discussion - Regression

e Again, we obtained considerably better results when using morgan fingerprints as
input.

e However, the comparison between FCNN and 1DCNN was not so clear, with very
similar results.
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Conclusion and Future Work

e In this study, we propose the use of different DL architectures and molecular
representations to predict the number of biochemical transformations needed to
synthesize a compound having the E. coli metabolites as available starting materials.

e As far as we know, this is the first time that the prediction of the number of biochemical
transformations needed to synthesize a compound using DL is described in the literature.

e Despite the lack of other studies to compare our results with, we can say that the results
obtained by our best models, a 63% accuracy, 92% if we give a one step margin, in a
5-label classification and 0.465 MAE in the regression, are promising.

e Approaches like this one can benefit the field of ME and specially be useful in
retrobiosynthesis tools to narrow the number of generated compounds allowing the
exploration of most promising pathways for the synthesis of target compounds.




Conclusion and Future Work

In the future, it would be interesting to test other compound representations and models
like recurrent neural networks and the Transformer architecture.

Further exploration of the data can also be conducted to understand if the generated
data are representative of what happens in microbial networks and which types of
biochemical reactions are being prioritized when generating new data.

Model interpretability could also be explored to understand why the models make
certain predictions and which properties of the molecules are more impactful for those
predictions.
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