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Drug Design and Development
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Computer Assisted Drug Design (CADD)

e Ligand-Based Drug Design (LBDD):

Computer Assisted Drug Design (CADD)

LBDD focuses on the interaction between a drug molecule and its
target receptor or enzyme, using known ligands to design new
compounds.

Ligand Based Drug Design (SBDD) Structure Based Drug Design (LBDD)

e Structure-Based Drug Design (SBDD):

« Ligand structure information « Target structure information

- QSAR/3D-QSAR - Molecular Docking

« Ligand Based Virtual Screening . Molecular Dy i i

. 2D Similarity-Based Search . De Novo Drug Design

- . - - . Pharmacophore Modelling . Pharmacophore Modelling
SBDD utilizes detailed structural information of the target | |
receptor or enzyme to design drugs that interact optimally. ;OO’O @©@<
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Gradient-based and Gradient-free Methods for Molecular
Optimization

Optimization algorithms are instrumental in generating optimal molecules by leveraging a provided molecular
representation and calculable objective functions.

Variational Continuous variable
P —— representation for:
jointly-trained *Intarpolation

on properties * Optimization
PP * Exploration

e Gradient-based Molecular Optimization - Deep Learning Models

SMILES | Encoder Latent Space Decoder  SMILES

A diagram of an autoencoder used for molecular design.
(https://pubs.acs.org/doi/10.1021/acscentsci.7b00572)

e Gradient-free Molecular Optimization - Population-Based =~
Stochastic Optimization Algorithms Mutaton Crossover & j S

Operators Operators

Scoring and
Replacement

Seed Structures 3| New Population 3| Optimized Soluti

Overall flowchart of a genetic algorithm for molecular
optimization.
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Atom, Fragment and Reaction-Based Molecular Design

e Level of specificity of molecular structure generation: atom-based,
fragment-based, and reaction-based methods.

e Reaction-based gradient-free:

feasibility and provide potential synthesis paths.

e Novelty and diversity of the generated molecules highly depend on the

availability of comprehensive reaction templates.

Table 1: Examples of the different gradient-free atom, fragment, and reaction-based methods.

ensure validity and synthetic

Method Molecule construction method Evolutionary technique
Kawai et al. [18] Atom-based Genetic Algorithm
iSyn [27] Reaction-based Genetic Algorithm
GB-GA [16] Atom-based Genetic Algorithm
MolFinder [21] Atom-based Conformational Space Annealing
AutoGrow4 [33] Reaction-based Genetic Algorithm
EvoMol [26] Atom-based Genetic Algorithm
LEADD [19] Fragment-based Genetic Algorithm
ChemGE [41] Fragment-based (u + A) Evolutionary Strategy
MSO [39] Atom-based Particle Swarm Optimization
MOAREF [13] Fragment-based Multi-objective Evolutionary Algorithm
CReM [30] Fragment-based Stochastic exploration
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lllustration of the continuum between atom-based,

fragment-based, and reaction-based molecular representation
paradigms. 10.1016/j.drudis.2021.05.019
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ReactEA: a Reaction-Based Gradient-Free Framework for
Molecular Optimization

e Here, we introduce ReactEA, a new open-source evolutionary framework for computer-aided drug discovery
that utilizes a comprehensive set of 22.949 biochemical reaction rules.

e ReactEA can be used for single or multi-objective optimization.

e ReactEA can virtually optimize any objective function and track potential synthetic routes during the
optimization process.

https://qithub.com/BioSystemsUM/ReactEA



https://github.com/BioSystemsUM/ReactEA

Reaction Rules

e Reaction rules are generic descriptions of reactions that encode the way reactants
are converted into products.

e Areaction rule can be applied to a compound if the compound contains a particular
substructure that is encoded by the reaction rule.

e Reaction rules are represented as SMARTS (SMiles ARbitrary Target Specification)
strings (https://www.daylight.com/dayhtml/doc/theory/theory.smarts.html).

oxidation of alcohols to ketones: [#6:1][0:2]>>[#6:1]=[0:2]

e The compounds are represented as SMILES (Simplified Molecular Input Line Entry
System) strings (hitps://www.daylight.com/dayhtml/doc/theory/theory.smiles.html).

caffeine: CN1C=NC2=C1C(=0)N(C(=O)N2C)C



https://www.daylight.com/dayhtml/doc/theory/theory.smarts.html
https://www.daylight.com/dayhtml/doc/theory/theory.smiles.html

Reaction Rules

Let's look at a simple example: the oxidation of alcohols to ketones

OH
/\OH Q—OH HO\)\/OH
ethanol phenol glycerol
CCO c1ccoc(O)ct OCC(0)CO
L 1
Reaction Rule: [#6:1][0:2]>>[#6:1]=[0:2] HOZ—CH3 > 20 —CH,

This definition says:

Take any carbon atom, which we'll label as atom #1, whether aliphatic or aromatic, that is
bound via a single bond to an aliphatic oxygen atom (capital O), that we label as atom #2,
and transform the linkage between these atoms to be a double bond.




Reaction Rules

Let’s apply this rule to our molecules:

il 1
Reaction Rule: [#6:1][0:2]>>[#6:1]=[0:2] HOZ—CH3 > 20 —CH,

T — )=

acetaldehyde

phenol invalid: pentavalent

carbon

OH 0 OH
odcm — Srm IS

glycerol Glyceraldehyde Dihydroxyacetone Glyceraldehyde



ReactEA: General Overview

Initial Population
@« jMetaIPy Evaluation
Open-Source Cheminformatics l
and Machine Leaming
Mutation
» Rules DB
1. Initial population: first set of candidate solutions (e.g. a set of available precursors in .
a particular organism, a diverse set of molecular fragments for a de novo design | Euaaton
experiment, or known ligands for lead optimization); |
Replacement
2. Evaluation: determines the fithess of each molecule in the initial population using the
defined objective functions; S

Criterion is met?, No

3. Selection: determines which solutions from the current population will be used to nscn

| NSGAII
| SPEA2

generate the next population; A -

General overview of the ReactEA
framework.




ReactEA: General Overview

4. Mutation: introduces new variations into the population. In ReactEA we apply reaction

rules to the molecules (transform reactants into products);

(H2w4)
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(H2:ve) H2v4)
c c
(Hzwa) C V) — N o
(H23va)
o
(H1v2)

HO
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N
O + —  Ho—ocH, + HO
ol XM OH
>
MetaNetX ID: MNXR111008 A
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o

2-(Hydroxymethyl)oxiran-2-ol

Example of how the mutation operator works. In this example, three different
reaction rules are used to generate three different products (mutants) from a single
reactant (parent).
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General overview of the ReactEA

framework.



ReactEA: General Overview

|
5. Evaluation: determines the fitness of the newly generated molecules using the defined toction  [¢ ?
objective functions; I
- |
6. Replacement: determines which individuals from the current population will be = I
replaced by offspring in the next generation. It plays a significant role in shaping the | —
evolution of the population towards high-quality solutions. I
7. Termination Criterion: determines when to stop the search process. It is essential to
ensure that the algorithm has found a satisfactory solution within a reasonable time and

Criterion is met?,

computational budget.

| NSGAIN
| NSGAIl
! SPEA2

| oA Optimized Solutions

General overview of the ReactEA
framework.




Results: Case 1 - Optimization of simple molecular properties

e Optimization of simple objective functions (drug-likeness (QED), synthetic accessibility score (SAS), etc.);
e Initial population: 648 precursors from the Escherichia coli iJO1366 metabolic model;
e 100 generations or until no improvements were observed for 5 generations;

e The results showed similar performance to state-of-the-art (SOTA) methods under comparable conditions.

QED: Q‘C‘F/(/}f\ Jki% %m
TS 0w o o

SOTA:
0 . 954 ES --> QED: 0.948 GA --> QED: 0.948 IBEA --> QED: 0.939 SOTA:
N 0 ] 9 5 ES —> pLogP: 10 GA --> pLogP: 10 IBEA > pLogP: 1.0
Ours: aL\O N = w
0.948 N 7 %%D e ?‘(‘)rS: \o@ Ma )

NSGAIl --> QED: 0.948 NSGAIIl --> QED: 0.948 SPEA2 --> QED: 0.948
NSGAIl -—> pLogP: 10 NSGAIl -—> pLogP: 1.0 SPEA2 --> pLogP: 1.0

Best molecules, QED optimization. Best molecules, SAS optimization.




Results: Case 2 - Similarity to Aspartame

e Main objectives:
- Assess the ability of ReactEA in finding paths to target molecules;
- Understand the impact of the initial population on the performance of ReactEA;

e We tested 8 different initial populations, each consisting of 100 molecules, including natural product
(NP)-based approved drugs from ChEMBL and scaffolds from known NPs;

e We were able to reach the Aspartame molecule in 5 out of the 8 initial populations.

Table 2: Impact of different initial populations on the performance of ReactEA.

Set Unique/Novel Internal Sim. Mean Sim. to Aspartame  Best Sim. to Aspartame QED  SAS

ChEMBL Representative 100% 0.457 0.598 0.803 0.436 3.030
ChEMBL Similar 100% 0.500 0.642 1.000 0.452 2.953
ChEMBL Top100 100% 0.510 0.653 1.000 0.447 2.971
ChEMBL Worst100 100% 0.506 0.639 1.000 0.447 2.971
Scaffolds Representative 100% 0.487 0.623 0.828 0.445 3.004
Scaffolds Similar 100% 0.508 0.645 1.000 0.428 2.973
Scaffolds Top100 100% 0.476 0.630 0.869 0.450 2.991

Scaffolds Worst100 100% 0.519 0.649 1.000 0.447 3.015




Results: Case 2 - Similarity to Aspartame

0.6 0:8
o —~ 0.7
) )
=
505 § oe
o 5
= S
5 .
2 0.4 {gﬁ 0.5 /
2 03 —— ChEMBL_Representative 2> 0.4 / —— ChEMBL_Representative
= £ y
e —— ChEMBL_Similar & / —— ChEMBL_Similar
.E —— ChEMBL_Top100 E 03 1 —— ChEMBL_Top100
c 0.2 —— ChEMBL_Worst100 ‘f —— ChEMBL_Worst100
&
g Scaffolds_Representative 3 02 ( Scaffolds_Representative
01 ! Scaffolds_Similar Scaffolds_Similar
Scaffolds_Top100 0.1 ' Scaffolds_Top100
Scaffolds_Worst100 Scaffolds_Worst100
0.0
0 20 40 60 80 100 0 20 40 60 80 100
Generation Generation
0.7 1.0 I !—
i
0.6 0.8 l'{ i
= = o
3 5 I J ’
0.5 2 1 =,
g g T =]
(] 206 -I '
204 > {
& ChEMBL_Representative 5 j—/' —— ChEMBL_Representative
€ o3 ~—— ChEMBL_Similar E ..I ~——— ChEMBL_Similar
N —— ChEMBL_Top100 & 04 i —— ChEMBL_Top100
o
3 0.2 —— ChEMBL_Worst100 ] 1 —— ChEMBL_Worst100
=" Scaffolds_Representative @ Scaffolds_Representative
b Scaffolds_Similar 0.2 Scaffolds_Similar
. Scaffolds_Top100 } Scaffolds_Top100
Scaffolds_Worst100 Scaffolds_Worst100
0.0
0 20 40 60 80 100 0 20 40 60 80 100
Generation Generation

Evolution of solutions across generations for the different initial
populations. Top left represents the average similarity to aspartame of all
solutions (average 10 runs). Top right the best solution (average 10
runs). Bottom left the mean similarity of the best run only. Bottom right
the best solution of the best run.

R

Best ChEMBL_Representative (0803) Best ChEMBL_Similar (1L0) ~ Best ChEMBL_Top100 (10)  Best ChEMBL_Worst100 (10)

Best Scaffolds_Representative (0.828) Best Scaffolds_Similar (LO)  Best Scaffolds_Top100 (0.869) Best Scaffolds_Worst100 (1.0)

Best molecule according to its similarity to aspartame generated by each EA.



Results: Case 3 - Docking to PARP1

e To show how ReactEA can be used for lead optimization, we used a library of 94 seed molecules, including 11
known PARP inhibitors and 83 molecular fragments;

° We used the DOCKSTRING package (AUtODOCk Vina Binding Affinity Against PARP1 (Best Molecule at each Generation)
L L ) -12.00
\évrzisﬁleer) to calculate the binding affinity against the PARP1 crnzs I N I
. -12.50 \\—
AN \
< -1275
Table 3: Results of the Docking to PARP1 optimization. S a0 \ \ \
g -13.25
EA Worst Best Mean Std. Dev. %, -13.50
£ —— NSGAIll
Init. Pop.  50.0000 -12.1000 35.277660  25.8735 g T137°  —— NSGAIl
NSGAIIl -11.1000 -14.4000 -11.769149  0.5998 1400
NSGAIl  -10.6000 -12.5000 -11.198936  0.4759 -1425 T ‘ég
SPEA2  -10.7000 -12.7000 -11.427660  0.5284 -14.50 Olaparib \
IBEA  -10.9000 -13.5000 -11.547872  0.5303 . 2 s 4 s & 71 s 9 1
GA -10.7000 -14.5000 -11.378723  0.6341 Generation
ES -11.5000 -13.1000 -11.954255 0.3935 Binding affinity of the best molecule at each generation for the different EAs.

The best inhibitor in the initial population, Olaparib, is shown for reference.




Results: Case 3 - Docking to PARP1

SPEA2 (Binding Affinity: -12.7)

NSGAIl (Binding Affinity: ~12.5)

NSGAIIl (Binding Affinity: -14.4)

IBEA (Binding Affinity: ~13.5) GA (Binding Affinity: -14.5) ES (Binding Affinity: -13.1)

Best molecule and respective binding affinity of the best generated molecules by
each EA.
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Molecule with the best binding affinity and the reaction templates that were applied from
the starting compound (Olaparib Fragment 652934) until the final molecule.



Conclusions

e We have introduced ReactEA, a new open-source reaction-based EA framework for molecule
generation,;

e ReactEA can be used in single and multi-objective problems, optimizing any (set of) measurable
objective functions with its large set of biochemical reaction rules;

e The use of reaction templates allows for the generation of valid structures and assures chemical
feasibility, with potential synthesis paths provided for the generated molecules;

e Our results demonstrate ReactEA's high configurability and versatility, achieving excellent results in
optimizing simple objectives like QED or SAS, as well as more complex tasks like similarity to a target
molecule and docking to proteins;

e One of the limitations of ReactEA and other reaction-based approaches is their dependence on the
available reaction rules and their coverage of the chemical space;

e Additionally, the reaction rules are limited to human knowledge, which may limit the exploration of new
areas of the chemical space.
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